
 

 

 

 

 

 

 

 

From Spreadsheets to Python 
Transforming Excel Workflows into Production-Ready Applications 

 

August 2025 

 

DL Lim 

 

  



 

From Spreadsheets to Python  2 
 

CONTENTS 

1 Executive Summary ...................................................................................................................... 3 

2 Introduction ................................................................................................................................... 4 

3 The Spreadsheet Ceiling .............................................................................................................. 5 

3.1 Version Control .................................................................................................................... 5 

3.2 User Access Control ............................................................................................................ 6 

3.3 Scalable Compute ................................................................................................................ 7 

3.4 Audit Logging ....................................................................................................................... 8 

4 Why Python ................................................................................................................................... 9 

4.1 The Language of Data and Machine Learning .................................................................. 9 

4.2 Commonly Understood Across Disciplines ....................................................................... 9 

4.3 Overcoming the Spreadsheet Ceiling .............................................................................. 10 

4.4 Ecosystem and Extensibility ............................................................................................. 10 

4.5 Regulatory Confidence and Transparency ...................................................................... 10 

4.6 Future-Proof Skillset .......................................................................................................... 10 

5 Challenges .................................................................................................................................... 11 

5.1 Excel Still Has Its Place....................................................................................................... 11 

5.2 Cultural Shift and Fear of Change ..................................................................................... 11 

5.3 From Prototype to Production .......................................................................................... 12 

5.4 Balancing Agility and Rigour ............................................................................................. 13 

6 Pathways to Migration ............................................................................................................... 14 

6.1 Identify Candidates for Migration ..................................................................................... 14 

7.1 Start Small, Scale Gradually .............................................................................................. 16 

7.2 Build Reusable Foundations .............................................................................................. 17 

7.3 Integration with Enterprise Systems ................................................................................ 17 

7.4 Upskilling and Change Management ............................................................................... 17 

8 Conclusion ................................................................................................................................... 18 

9 References ................................................................................................................................. 20 

 

  



 

From Spreadsheets to Python  3 
 

1 EXECUTIVE SUMMARY 

Spreadsheets have been the backbone of financial modelling and analytics for decades, 
providing flexibility and accessibility. They enabled analysts, actuaries, and finance 
professionals to build complex valuation models, run scenario analyses, and conduct regulatory 
calculations with relative speed. However, as organisations scale and regulatory requirements 
become more stringent, the limitations of spreadsheets become increasingly apparent. 
Version control, user access management, auditability, and scalable computation are not 
optional features; they are essential for sustainable, compliant operations. 

Python and modern code-based systems offer a pathway beyond these constraints. By 
enabling reproducible, auditable, and scalable workflows, production-ready systems unlock 
efficiency and transparency that spreadsheets alone cannot deliver. They allow teams to 
centralise complex logic, integrate with enterprise data sources, and automate repetitive 
calculations, while still preserving flexibility for exploration and prototyping. Organisations that 
embrace this transition can achieve faster, more reliable decision-making, improve operational 
resilience, and gain a competitive edge in a market where precision and speed are paramount. 

Building such systems requires more than just writing code. Success demands the right 
combination of expertise, team structure, processes, and strategic planning. Thoughtful 
design, reusable frameworks, and robust integration practices ensure that migration from 
spreadsheets to production systems is efficient, low-risk, and future-proof. Organisations that 
invest in these capabilities position themselves to meet regulatory and operational demands 
while leveraging their data and models as strategic assets, enhancing competitiveness and 
driving growth. 

In this context, expert guidance and experience can significantly accelerate the journey. 
Leveraging proven practices and purpose-built solutions helps organisations prioritise high-
impact projects, avoid common pitfalls, and realise the full potential of Python-based systems 
for finance and insurance operations. 

 

  



 

From Spreadsheets to Python  4 
 

2 INTRODUCTION 

For decades, Microsoft Office’s Excel has been the natural evolution from pen, paper, and 
calculators. It replaced manual ledgers and human “computers” with a flexible, accessible tool 
that empowered professionals to model scenarios, perform calculations, and share results at 
speed. In finance and insurance especially, spreadsheets became indispensable, offering a 
way to prototype, test, and deliver insights without needing specialist software development 
skills. Entire business processes, even mission-critical ones, have been built around Excel. 

But just as Excel once supplanted the manual methods before it, code is now steadily replacing 
Excel. Languages like Python are becoming the next logical step, enabling organisations to 
move from individual workbooks towards systematic, production-grade solutions. Python not 
only mirrors Excel’s accessibility but expands on it, offering scalability, reproducibility, and 
integration into modern enterprise systems. Where Excel formulas remain bound to a grid, 
Python modules can be version-controlled, tested, deployed, and scaled across servers or 
cloud environments. 

This shift ought to matter most in finance and insurance, where regulatory compliance, 
auditability, and performance at scale are non-negotiable. Regulators expect firms to 
reproduce calculations years later, competitors demand faster turnaround, and customers 
reward accuracy and transparency. Yet, the industry is still slow on the uptake compared to 
other tech-based companies. Excel can provide quick answers, but Python can provide 
sustained advantage. The migration is not about abandoning a useful tool, but about realising a 
new competitive edge recognising that the future of reliable, scalable, and compliant analytics 
lies in code. 

 

 

 

  



 

From Spreadsheets to Python  5 
 

3 THE SPREADSHEET CEILING 

Excel has carried organisations a long way. It has enabled actuaries, analysts, and financial 
professionals to design and run valuation models, perform model validation tests, calculate 
solvency ratios, price insurance products, analyse reserve movements, conduct experience 
studies, measure embedded value, and even develop credit risk models. These capabilities 
made Excel a cornerstone of financial and insurance workflows, democratising access to 
advanced calculations without the need for formal programming. 

However, as financial products, regulations, and organisational demands have become more 
complex, the cracks in the spreadsheet-run organisational model are impossible to ignore. 
What was once sufficient for personal productivity or team-level collaboration no longer scales 
to the demands of modern, regulated enterprises. This is the spreadsheet ceiling: the point at 
which Excel is no longer enough to support the accuracy, auditability, and scale required by the 
business. 

3.1 VERSION CONTROL 

Every analyst has faced the problem of “MotorPricing_v2_final_FINAL_CLEAN.xlsx”. 
Spreadsheets are inherently file-based, leading to duplication, confusion, and errors when 
multiple people are working on the same logic. Unlike code repositories, there is no native 
mechanism to track who changed what, when, and why. This makes it nearly impossible to 
enforce consistent processes across teams, or to return confidently to a trusted prior version. 

In high-stakes environments like solvency reporting or risk modelling, the absence of robust 
version control creates material risk. Regulators may ask firms to reproduce a calculation from 
years ago, but if workbooks have evolved in an uncontrolled way, that reproducibility cannot 
be guaranteed. 

 

 

 

  



 

From Spreadsheets to Python  6 
 

3.2 USER ACCESS CONTROL 

Excel is highly permissive. Anyone with access to a file can usually see and change 
everything. While it's possible to password-protect an Excel file, this method is both easily 
bypassed and ineffective for managing granular permission levels securely.  

Although the level of flexibility and openness with Excel files supports collaboration, it comes 
at the cost of weakened governance. Sensitive assumptions or formulas can be altered (by 
mistake) without oversight, and entire sheets of data can be copied and shared and errors 
compounded across the organisation. 

This lack of granular access control poses compliance challenges in finance and insurance, 
where regulators expect evidence of proper handling of sensitive data. Without robust 
permissions, audit teams struggle to confirm that only the right people had access to the right 
parts of a model. 

 

 

 

 

  



 

From Spreadsheets to Python  7 
 

3.3  SCALABLE COMPUTE 

Spreadsheets were never designed to handle enterprise-scale compute. 

Earlier 32-bit versions of Excel (which is still broadly in use today!) often crashes with files over 
100MB, maxing out their 2GB of RAM. Formula-heavy spreadsheets seldom perform well 
once they’re over 40MB. More modern 64-bit versions of Excel can handle much larger files 
up to the limits of the system’s RAM, but even so, they can’t scale multi-node, as it is a 
desktop-interface. 

Such kinds of large datasets quickly push the boundaries of what Excel can manage, often 
leading to crashes, corrupted files, or unacceptably long calculation times. Complex actuarial or 
risk models that may need to run tens of thousands of simulations simply cannot be executed 
efficiently in Excel. 

This lack of scalability forces analysts to cut corners, simplify assumptions, or run fewer 
simulations than ideal. The result is not only slower decision-making but also reduced 
accuracy in areas where precision is critical. 

Where Excel is bound to the computational and memory limitations of the single machine on 
which it is installed, code unlocks the ability to run in a distributed fashion over a number of 
nodes. For instance, frameworks like Apache Spark allow workloads to be broken into 
smaller tasks, which are distributed across a cluster of worker nodes. A central manager, 
often called the driver, coordinates these workers, ensuring that tasks are executed in parallel 
and results are gathered efficiently. 

This model allows organisations to scale calculations well beyond the limits of a single laptop 
or desktop. Instead of waiting hours (or days) for a spreadsheet to grind through complex 
simulations, distributed systems can process millions of records and run thousands of 
scenarios in a fraction of the time. For data-heavy industries such as finance and insurance, 
this parallelism is a game-changer: regulatory stress tests, reserve calculations, or pricing 
models that once strained Excel can now be computed at enterprise scale, with consistent 
accuracy and far greater speed. 

 

 



 

From Spreadsheets to Python  8 
 

3.4 AUDIT LOGGING 

One of Excel’s greatest weaknesses in regulated environments is the absence of proper audit 
logging. While it is possible to track some changes with features like “Track Changes,” these 
are often clunky, incomplete, and not robust enough for enterprise needs. Critical questions 
such as “Who changed this formula?” or “When was this assumption last updated?” cannot be 
answered with confidence. 

In insurance and finance, where every number must stand up to scrutiny, the inability to 
produce a defensible audit trail exposes organisations to compliance risk. Without an audit log, 
even well-constructed spreadsheets remain fragile and difficult to trust. 

 

 

  



 

From Spreadsheets to Python  9 
 

4 WHY PYTHON 

While any code language with good software engineering practices should be able to 
accomplish what Python could, Python’s dominance comes from its vast ecosystem, low 
barrier to entry, the sheer size of its global community, and popularity amongst developers. 

 

 

 

 

 

 

 

 

 

 

 

 

As such Python emerges as the natural successor to Excel in modern financial and insurance 
workflows. It is not only the dominant language in data and machine learning but also an 
approachable, versatile tool that allows teams to scale beyond the spreadsheet ceiling. 

4.1  THE LANGUAGE OF DATA AND MACHINE LEARNING 

Python is the undisputed leader in the fields of data science, machine learning, and artificial 
intelligence. Virtually all modern frameworks from numpy and PyTorch to pandas and scikit-
learn are all written in or support Python. This means that actuarial teams, quants, and analysts 
who already rely on data-intensive methods can tap into a massive ecosystem of tools that 
Excel simply cannot match. 

4.2  COMMONLY UNDERSTOOD ACROSS DISCIPLINES 

Unlike niche or legacy programming languages, Python enjoys near-universal recognition. Its 
simple syntax makes it accessible to beginners, while its depth allows experts to build 
sophisticated systems. This broad adoption means analysts, developers, and even business 
stakeholders are more likely to understand and engage with Python-based solutions. It 
reduces silos and fosters a shared language across teams. 

  



 

From Spreadsheets to Python  10 
 

4.3  OVERCOMING THE SPREADSHEET CEILING 

Where Excel reaches its limits, Python excels. It addresses the pain points of spreadsheets by: 

 Enabling Git and version control for transparent history and collaboration 

 Enforcing user access and permissions within applications 

 Scaling calculations across clusters or cloud infrastructure 

 Capturing a full audit trail of inputs, changes, and outputs 

In short, Python turns fragile spreadsheet models into robust, production-grade systems. 

4.4  ECOSYSTEM AND EXTENSIBILITY 

Python is not just a language, it is a platform. Libraries exist for virtually every need: from 
numerical computation with NumPy, to actuarial modelling with specialised packages, to web 
deployment with FastAPI or Django. [Read our paper on this]. This ecosystem allows 
organisations to evolve incrementally, starting with replacing an Excel workbook and eventually 
scaling up to enterprise-wide data systems, all without switching tools. 

4.5 REGULATORY CONFIDENCE AND TRANSPARENCY 

For industries like finance and insurance, regulators demand reproducibility, transparency, and 
evidence of control. Python, combined with the right frameworks and solid DevOps (e.g. 
MLFlow, git, CI/CD pipelines), enables models to be documented, versioned, and validated 
systematically. 

Tagged releases can be used to re-run models and specific points in time. 

This produces not only accurate results but also confidence in auditability and compliance; 
something spreadsheets struggle to provide. 

4.6  FUTURE-PROOF SKILLSET 

Finally, Python equips teams with skills that are forward-looking. While Excel proficiency 
remains valuable, organisations that embrace Python prepare their teams for the growing 
demands of automation, artificial intelligence, and scalable systems. This ensures that 
investments made today continue to deliver value tomorrow. 

 

 

 

 

  



 

From Spreadsheets to Python  11 
 

5 CHALLENGES 

Transitioning from spreadsheets to code is not a matter of simply swapping one tool for 
another. It requires a cultural shift as much as a technical one, and organisations need to be 
mindful of the human and operational factors involved. 

5.1  EXCEL STILL HAS ITS PLACE 

Excel should not be seen as an enemy to be eliminated. Its flexibility and ease of use make it 
the perfect environment for quick experimentation, exploratory analysis, or proof-of-concept 
work. When an analyst has an idea for a new valuation approach, a fresh way to look at reserve 
movements, or a novel pricing adjustment, Excel allows them to model it rapidly without waiting 
for a full development cycle. For tasks where speed and accessibility are more important than 
scale or auditability, Excel continues to shine. 

The point, then, is not to eliminate Excel but to understand its scope. It should serve as the 
launchpad for ideas, not the final destination for enterprise-critical systems. Once a model 
proves its value and becomes integral to business operations or regulatory reporting, that is 
the time to migrate it into code. In this way, Excel and Python can complement one another: 
Excel providing the agility for discovery, and Python delivering the structure, scalability, and 
controls required for production. 

 

5.2 CULTURAL SHIFT AND FEAR OF CHANGE 

Replacing spreadsheets with code can feel daunting to many professionals. Excel has been the 
familiar companion of analysts, actuaries, and finance teams for decades, and there is comfort 
in its grid of rows and columns. Moving to Python, with its scripts and functions, can feel like 
stepping into unfamiliar territory. Some may even fear that learning a new tool signals the end 
of their current role, or that automation will make their jobs obsolete. 

In reality, this transition represents an opportunity for growth rather than loss. By learning 
Python, spreadsheet specialists expand their toolkit and become more versatile. They are not 
being replaced but empowered to take on bigger, more complex problems that Excel cannot 
handle. Upskilling in this way allows professionals to remain central to the organisation’s future, 
while also ensuring their careers remain relevant in a rapidly changing industry. The shift is less 
about giving up what you know and more about building on it with new, powerful capabilities. 

  



 

From Spreadsheets to Python  12 
 

5.3  FROM PROTOTYPE TO PRODUCTION 

Depending on what an individual’s level of comfort is with Python, they may use LLM’s and AI 
to accelerate their output. It is often easy to build a quick prototype in Python. With a few 
lines of code and access to the right libraries, analysts can replicate models that once required 
sprawling spreadsheets. 

This ease of prototyping is one of Python’s great strengths, but it is only the beginning. Moving 
from a proof-of-concept to a production-ready system introduces a whole new set of 
challenges. 

Productionising a model means ensuring it integrates with other systems, runs reliably on cloud 
infrastructure, and adheres to security and compliance requirements. It means adding 
monitoring, logging, and automated testing. It also means designing for scalability so the model 
works not only for one analyst but across entire teams or business units.  

These are skills rooted in software engineering and systems design, and they need to be 
learned and embedded alongside modelling expertise. Organisations that understand this 
difference set themselves up for long-term success, while those that underestimate it risk 
building fragile systems that fail under real-world pressures. 

 

 

 

  



 

From Spreadsheets to Python  13 
 

5.4 BALANCING AGILITY AND RIGOUR 

One of Excel’s enduring strengths is agility. It lets analysts test an idea in minutes, make 
adjustments on the fly, and share results almost instantly. By contrast, production systems in 
Python require discipline: documenting assumptions, writing tests, enforcing version control, 
and following structured deployment practices. For teams used to the instant feedback of 
spreadsheets, this discipline can feel like a slowdown. 

The challenge lies in finding the balance. Organisations must preserve the creative spark and 
rapid experimentation that spreadsheets encourage, while also embracing the rigour of 
production systems. This is not a choice between speed and structure but an integration of 
both. Prototyping can remain fast and flexible in Excel or ad-hoc Python, while production 
systems are designed with robustness in mind. With the right practices, organisations can 
move smoothly from exploration to enterprise-grade deployment, keeping the best of both 
worlds. 

 

 

  



 

From Spreadsheets to Python  14 
 

6 PATHWAYS TO MIGRATION 

Moving beyond Excel does not mean abandoning it altogether or attempting a wholesale 
switch overnight. Successful transitions happen in stages, guided by clear criteria and 
supported by reusable foundations. By treating migration as a journey rather than a one-off 
project, organisations can de-risk the process and maximise the value of their investments. 

6.1 IDENTIFY CANDIDATES FOR MIGRATION 

Not every spreadsheet needs to be converted into a Python system. Attempting to migrate all 
spreadsheets at once is inefficient and risky. The first step is to categorise spreadsheets 
based on business impact, complexity, and lifecycle. This ensures resources are focused on 
models where migration delivers the greatest value. 

Criteria for selecting spreadsheets to migrate: 

 Competitive Advantage: Does building this in a systematic way help the organisation 
gain an edge in the market? 

 Business Criticality: Does the spreadsheet underpin regulatory reporting, financial 
statements, or key business decisions? 

 Complexity of Logic: Does it include advanced formulas, iterative calculations, or 
embedded macros that are difficult to maintain in Excel? 

 Frequency of Use: Is it updated regularly, reused across teams, or shared across 
multiple stakeholders? 

 Collaboration Needs: Do multiple people need access to modify, validate, or review the 
spreadsheet simultaneously? 

 Data Volume and Scalability Requirements: Does it handle large datasets that exceed 
Excel’s memory or computational limits? 

 Audit and Compliance Requirements: Is it subject to internal audits or external 
regulatory scrutiny? Does having a system help mitigate some of those risks? 

 Repetitive Tasks: Does it require frequent manual updates, copy-pasting, or repetitive 
calculations? 

  



 

From Spreadsheets to Python  15 
 

Examples of spreadsheets that are strong candidates for migration: 

 Valuation Models: Complex calculations for reserves, policy values, or embedded value 
analysis. 

 Solvency and Risk Calculations: Stress tests, credit risk models, or capital adequacy 
assessments. 

 Pricing Models: Insurance premium calculators, product pricing simulators, or scenario 
analysis templates. 

 Reserve Movement Analyses: Spreadsheets tracking historical reserve changes, 
claims development, or loss triangles. 

 Experience Studies: Mortality, lapse, or claim experience studies that feed into 
assumptions for actuarial models. 

 Regulatory Submissions: Files that are used to compile reports required by regulators. 

Selecting candidates with these criteria ensures that the migration effort is strategic, risk-
managed, and high-impact. Less critical spreadsheets, or those used for short-term analysis 
or proof-of-concepts, can remain in Excel, allowing teams to maintain agility while focusing 
development efforts where it matters most. 

  



 

From Spreadsheets to Python  16 
 

6.2 START SMALL, SCALE GRADUALLY 

The temptation may be to tackle the largest, most business-critical spreadsheet first, but this 
is often a recipe for frustration. Instead, a more effective approach is to start small and select 
a moderately complex model that highlights the benefits of Python without overwhelming the 
team. Early wins build confidence, demonstrate tangible value, and provide learning 
experiences that can be applied to larger projects later. 

Scaling gradually also helps to manage organisational change. Stakeholders can see that 
Python-based systems deliver the same outputs with greater control and transparency, while 
the teams involved gain practical skills and confidence. By the time the organisation is ready to 
migrate its most critical spreadsheets, the people, processes, and infrastructure are already in 
place to support success. 

 

 

  



 

From Spreadsheets to Python  17 
 

6.3  BUILD REUSABLE FOUNDATIONS 

Migration is faster and more consistent when teams avoid reinventing the wheel for every 
model. Establishing a set of reusable foundations is therefore essential. This could include 
shared Python libraries for common actuarial or financial functions, standardised approaches 
for input validation and reporting, and frameworks for automated testing. 

These foundations serve as a springboard, enabling analysts to focus on the logic that 
differentiates their models rather than the plumbing required to make them work. Over time, a 
library of reusable components reduces duplication, improves quality, and ensures 
consistency across teams. It also accelerates future migrations, as each new project builds on 
the lessons and tools developed before it. 

 

6.4 INTEGRATION WITH ENTERPRISE SYSTEMS 

A standalone Python script is already an improvement over a fragile spreadsheet, but the real 
power comes when models are integrated into the wider enterprise ecosystem. This might 
mean connecting to a central data warehouse, exposing results through an API, or deploying 
models onto cloud infrastructure that scales on demand. 

Integration transforms models from isolated tools into shared organisational assets. Rather 
than emailing spreadsheets back and forth, results can be consumed directly by downstream 
systems or visualised in dashboards. This reduces duplication, ensures consistency, and 
enables more agile decision-making. Integration also ensures that Python-based models meet 
the same standards of governance, security, and reliability as other enterprise systems. 

 

6.5 UPSKILLING AND CHANGE MANAGEMENT 

Last but not least, perhaps, the most important pathway to migration is people. Analysts and 
actuaries who have relied on Excel for years need support to learn Python, and organisations 
must create a culture that encourages this shift. Formal training, mentoring, and hands-on 
projects all play a role, but equally important is fostering a mindset of curiosity and continuous 
improvement. 

Change management is critical here. Migration should be framed not as a loss of familiar tools 
but as an opportunity to gain new skills and increase impact. Upskilled professionals remain 
domain experts while also becoming more technically versatile, bridging the gap between 
business and technology. This dual expertise ensures that the organisation does not just 
replace spreadsheets with code but elevates its overall modelling capability. 

 

  



 

From Spreadsheets to Python  18 
 

7 CONCLUSION 

Excel has served as the workhorse of financial modelling, but its limitations become acute as 
organisations scale and regulatory scrutiny intensifies. Version control, user access, scalability, 
and audit logging are not optional extras in this environment; they are fundamental 
requirements if an organisation is to have forward-looking success. 

While it is excellent for prototyping and exploration, but once models underpin regulatory 
filings, business-critical decisions, or enterprise-scale workflows, the spreadsheet ceiling 
becomes unavoidable, and the need to move into something more robust in code and in 
systems becomes apparent. 

Nevertheless, building production-ready systems is inevitably more complex than working in 
spreadsheets. It requires careful design, robust infrastructure, and a blend of technical and 
domain expertise. Organisations that treat this process seriously — investing in the right skills, 
teams, and resources — are the ones that consistently achieve reliable, scalable, and auditable 
models. 

Such organisations gain a tangible competitive edge against other players in the market by 
moving more quickly. With streamlined automation, faster calculations, and centralised access 
to trusted data, actuaries and analysts can make better-informed decisions more readily. This 
not only reduces costs and operational friction but also enables teams to respond nimbly to 
business opportunities and regulatory demands, ultimately supporting stronger client outcomes 
and growth. 

  



 

From Spreadsheets to Python  19 
 

 

 

If you are currently exploring moving your critical models from spreadsheets into robust 
systems, having guidance from experienced practitioners can make a meaningful difference. 
Proper planning and expert insight ensure the transition is smooth, efficient, and aligned with 
your organisation’s strategic goals. 

Let us know which low-hanging fruit projects you’re currently looking at productionising into 
code. Perhaps there are purpose-built solutions that make the transition both painless and 
immediate. 

 

 

 

https://lunoxtech.com/get-in-touch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

From Spreadsheets to Python  20 
 

8 REFERENCES 

Statistics Graphs: 

https://www.statista.com/chart/16567/popular-programming-languages/ 

https://www.devoriales.com/post/374/python-tops-the-tiobe-index-the-most-popular-
programming-languages-january-2025 

https://coding-bootcamp-2021.acmbpdc.org/02-overview-of-programming-languages/ 

 

https://www.anaconda.com/blog/python-in-excel-for-finance 

https://www.researchgate.net/publication/392758009_Python_for_Finance_A_Modern_Guide_t
o_Building_and_Interpreting_Financial_Models  

 


