

Web Development in Python for Data
Teams
Strategically Unlocking Data Products Without Leaving Your
Language

September 2025

DL Lim

Web Development in Python for Data Teams 2

CONTENTS

1 Executive Summary .. 3

2 Introduction ... 4

3 Why Use Python ... 5

4 Popular Python Web Frameworks ... 6

5 Why Python for Web and API Development .. 8

6 Intro to FastAPI .. 11

7 References .. 17

Web Development in Python for Data Teams 3

1 EXECUTIVE SUMMARY

Data teams today are tasked not only with producing accurate models and analyses but also
with making their outputs accessible across the organisation. Traditional approaches often
create friction: web teams may struggle to implement complex analytical logic in unfamiliar
languages, while data teams can be pulled away from core work to maintain front-end
interfaces.

This misalignment leads to inefficiencies, duplication of effort, and slowed delivery of data
products. By adopting Python-native web frameworks and API-first architectures,
organisations can bridge this gap, allowing each team to focus on their strengths while still
delivering accessible, maintainable, and high-performing services.

FastAPI emerges as a particularly compelling choice for data teams. Purpose-built for web
APIs, it allows teams to expose analytical workflows and models with minimal overhead, while
benefiting from automatic validation, documentation, and modern asynchronous capabilities.
Coupled with tools like SQLModel, which unify data validation and database interaction, data
teams can manage their entire stack in Python. This reduces handoffs, eliminates translation
errors, and allows teams to version control both their data models and API schemas
seamlessly.

Ultimately, these approaches enable a more scalable and strategic architecture. By building
APIs that can be shared across business units or consumed by front-end applications,
organisations unlock the potential of a data mesh model, promoting autonomy, consistency,
and faster decision-making. In doing so, they empower data teams to deliver high-value
outputs efficiently, while maintaining accuracy, reliability, and control over their analytical
products.

Web Development in Python for Data Teams 4

2 INTRODUCTION

Web development has long been dominated by JavaScript and its surrounding ecosystem.
Front-end applications are commonly built with TypeScript frameworks such as React, Angular,
or Vue, while the back end often relies on Node.js. Other languages like PHP, Ruby, Go, Java,
and .NET also continue to hold their ground as popular options for powering the server side of
the web.

Depending on who you ask, JavaScript is often cited as the most widely used programming
language in the world.

Yet, Python stands firmly alongside it as one of the most influential languages of our time. With
its clean syntax and its central role in the rise of AI, machine learning, and data science, Python
has become the language of choice for data teams across industries.

Web Development in Python for Data Teams 5

3 WHY USE PYTHON

Python has earned its reputation as the language of choice for data-driven work. From data
science to machine learning and artificial intelligence, it is widely considered the best tool for
the job. Beyond that, it consistently ranks as one of the most versatile programming languages
in use today. Colloquially second-best choice for almost everything else.

For data teams, this versatility carries practical advantages when it comes to web
development:

 One language across the stack: A Python-based web server allows the same language
to power both the analytical layer and the application backend.

 Reduced need for specialists: Teams no longer need to hire or train JavaScript-
focused developers simply to bridge the gap between analytics and delivery.

 Less silo-ing, fewer handoffs: A common language reduces friction between teams,
minimises knowledge gaps, and streamlines collaboration.

The result is a tech stack that is simpler to maintain and easier to evolve, with fewer moving
parts and fewer dependencies on highly specialised skills. For data teams accustomed to
working primarily in Python, the learning curve is minimal, enabling faster delivery of new
products and features.

It should be acknowledged, however, that Python’s strengths lie more in the backend than the
front end. While it can support web interfaces, it is not the strongest tool for producing
modern, highly polished user experiences. That challenge, and how it can be addressed, will be
explored later in this paper.

Web Development in Python for Data Teams 6

4 POPULAR PYTHON WEB FRAMEWORKS

When data teams begin to consider web or API development in Python, the natural question
arises: which framework should we use? Unlike the JavaScript ecosystem, which is often
fragmented and rapidly evolving, the Python web development landscape is relatively stable,
with a few well-established frameworks that dominate the field.

Three standouts are Django, Flask, and FastAPI. Each offers a different balance of simplicity,
flexibility, and performance. The choice between them depends on the needs of the team, the
scale of the project, and the skills of the developers involved.

The table below highlights their main characteristics and differences:

 Django Flask FastAPI

Philosophy Batteries included, full-
stack

Lightweight, minimal,
flexible

Modern, API-first, type-
driven

Primary Use
Case

Large applications, full-
featured platforms

Small to medium apps,
microservices

APIs, microservices, async
applications

Architecture Monolithic (can be
modular with effort)

Microframework,
highly modular Async-first, modular

Ease of
Learning

Steeper learning curve, but
very structured

Easy for beginners,
minimal boilerplate

Moderate, but intuitive
with type hints

Performance Good, but slower
compared to FastAPI

Good for most
workloads

Excellent, among the
fastest Python frameworks

Asynchronous
Support

Limited (as of recent
versions)

Basic via extensions,
not native

Native async/await
support

Built-in
Features

ORM, admin panel,
authentication, forms, etc.

Minimal built-in,
extensions required

Auto docs (Swagger,
ReDoc), dependency
injection, SQLModel ORM

Extensibility Strong ecosystem, less
flexible out-of-box

Very flexible with many
extensions

Good extensibility, smaller
but growing ecosystem

Community &
Ecosystem

Mature, very large, long
history

Mature, very large,
long history

Growing fast, vibrant, but
younger

Documentation Comprehensive, well
established

Clear, good for
beginners

Excellent, modern and
developer-friendly

Deployment
Complexity

More complex, but stable
and well-supported

Simple, flexible, many
deployment options

Straightforward, optimised
for modern APIs

Best Fit For Enterprise apps, complex
data-driven systems

Prototyping,
lightweight services

High-performance APIs,
modern microservices

Web Development in Python for Data Teams 7

Key Takeaways:

 Django is best suited for teams that want a comprehensive, ready-to-go framework
where much of the architecture is predefined. It is particularly strong in enterprise-
scale applications with heavy data management requirements.

 Flask shines in smaller projects or situations where maximum flexibility is required. It
provides a solid foundation without imposing architectural decisions, which can be a
double-edged sword.

 FastAPI represents the modern wave of Python frameworks, designed around
asynchronous programming and type hints. It excels in API-first projects, offering
excellent performance and built-in documentation generation.

For data teams, the right choice depends on the balance between speed of delivery,
maintainability, and long-term scalability. Django is ideal if you want an all-in-one solution with
minimal decision fatigue, Flask suits those who want simplicity and freedom, and FastAPI is
compelling for API-driven products that demand high performance and modern practices.

Web Development in Python for Data Teams 8

5 WHY PYTHON FOR WEB AND API DEVELOPMENT

There is an increasing need for data teams to expose insights, models, and analytical results to
the web or other teams. However, questions around ownership often arise: should data teams
take responsibility for web services, or should web teams handle complex analytical logic?
This uncertainty can create gaps, inefficiencies, or duplicated effort across the organisation.

This section explores the challenges and opportunities that arise when data teams consider
web development. It illustrates the tensions between data and web teams, the inefficiencies of
traditional frameworks, and how API-first strategies can provide a balanced, scalable solution.
Through a series of diagrams, we show how thoughtful framework choices and architectural
approaches enable data teams to expose their work effectively, without losing focus on what
they do best: creating accurate, impactful data products.

The overlap between data teams and web teams creates uncertainty around ownership of web
services. Should data teams extend into web development, or should web teams take on
complex ML and analytical logic? This ambiguity often leads to gaps, inefficiencies, or
duplicated effort.

Let’s consider a situation where web teams manage back-end services in Node.js. Complex
application logic written in Python must be translated across languages. This creates
inefficiencies, introduces risks of misinterpretation, and adds friction between teams whose
strengths lie in very different domains.

Web Development in Python for Data Teams 9

On the flip side, when data teams manage web services using frameworks like Django or Flask,
they are often required to build and maintain the front-end interfaces themselves. This
quickly becomes a full-time responsibility, diverting attention from developing core application
logic and ensuring the accuracy of results. The additional burden can lead to inefficiencies and
reduced focus on the data products that matter most.

A practical compromise is to build an API that exposes the application logic, while delegating
the front-end development to the web team. This decoupling allows data teams to maintain
complex application logic in Python within the API, while web teams focus full-time on
delivering polished user interfaces.

Web Development in Python for Data Teams 10

Given the scenario, using FastAPI becomes a natural choice. Unlike Django or Flask, FastAPI is
a modern framework purpose-built for building web APIs in Python, offering native
asynchronous support, automatic documentation, and high performance tailored for data-
driven applications.

When a data team builds and exposes their API to the broader organisation, it enables a data
mesh architecture. Different data teams or business units can share and access data through
these APIs, while some APIs can also be directly consumed by front-end applications,
promoting scalability, autonomy, and consistency patterns across the enterprise.

By shifting the responsibility for web interfaces to specialised teams and allowing data teams
to focus on API-driven delivery, organisations strike a balance between expertise, efficiency,
and maintainability. This approach not only reduces duplication of effort and minimises
translation errors but also lays the foundation for scalable, modern architectures where data
products can be shared and consumed seamlessly across the enterprise.

Web Development in Python for Data Teams 11

6 INTRO TO FASTAPI

FastAPI is a modern Python framework specifically designed for building high-performance
APIs. It combines simplicity, speed, and type safety, making it an ideal choice for data teams
who want to expose their models and analytical workflows without leaving the Python
ecosystem.

In this section, we provide a hands-on example codebase that readers can follow along with.
The goal is to demonstrate FastAPI’s core features, including but not limited to:

 Defining routes and endpoints with minimal boilerplate

 Automatic data validation using Python type hints

 Built-in interactive documentation with Swagger and ReDoc

 Support for asynchronous operations to handle high-performance workloads

By working through the example, data teams will gain a practical understanding of how FastAPI
allows them to serve APIs efficiently while keeping their application logic in Python. This
approach ensures that analytical workflows can be shared across the organisation with minimal
friction, while providing clear, maintainable, and production-ready code.

The sample repository can be found at: https://github.com/dl-lim/fastapi-example

Web Development in Python for Data Teams 12

App Startup

This section creates the FastAPI application, which is the core object that runs your API. It
configures basic settings such as:

 The name and version of the API

 Where interactive documentation can be accessed (/docs for Swagger UI, /redoc for
ReDoc)

 How the application handles startup and shutdown events via the lifespan parameter

This step initialises the application, preparing it to handle incoming requests and serve the
functionality built by the data team. FastAPI handles much of the setup automatically, letting
the team focus on building the endpoints and logic.

Middleware

Middleware is a layer that runs between the client and your API endpoints, processing requests
and responses. In this example, the FastAPI application is adding CORS (Cross-Origin
Resource Sharing) middleware.

This is a way to add reusable logic that runs before or after every request in your application. It
can handle tasks such as logging, authentication, error handling, or modifying requests and
responses.

Web Development in Python for Data Teams 13

SQLModel

SQLModel is a Python library that combines the best of two worlds: Pydantic for data
validation and type enforcement, and SQLAlchemy for database ORM capabilities. This means
you can define your data models once and use them both for interacting with your database
and validating API input and output.

SQLModel is also developed in mind to support FastAPI natively.

Why Pydantic matters:

 Ensures that all data entering or leaving your API conforms to expected types and
formats (Enforces validation natively)

 Reduces runtime errors by catching inconsistencies early

 Makes your code self-documenting and easier to maintain

Why SQLModel is a great ORM:

 Simplifies database operations with Pythonic syntax

 Supports relationships, constraints, and primary/foreign keys naturally

 Works seamlessly with Alembic for database version control and migrations, allowing
teams to track schema changes safely

For data teams, SQLModel makes it straightforward to manage database interactions while
keeping data validation and application logic in Python, reducing context-switching and
boilerplate code.

Web Development in Python for Data Teams 14

Decorator

In FastAPI, creating a new route is as simple as adding a decorator to a function. The decorator
defines the HTTP method, the endpoint path, and metadata such as the response model and
status code.

This single line registers a function as a POST endpoint, automatically handling request
parsing, response validation, and OpenAPI documentation generation in Swagger or Redoc.

Dependency Injection

Dependency injection in FastAPI is a way to provide reusable components or services to your
route functions without manually creating them each time. You declare dependencies in the
function signature, and FastAPI automatically provides the required objects when the endpoint
is called.

 session is automatically provided by get_db_session, giving the function access to a
database session

 current_user is provided by get_current_user, ensuring the function knows who is
making the request

This pattern keeps your code clean, reusable, and testable, while abstracting away boilerplate
setup logic for things like database connections or authentication.

Web Development in Python for Data Teams 15

7 CONCLUSION

Data teams operate at the intersection of specialised expertise and organisational demand.
They must focus on developing accurate, reliable models and analyses while also ensuring that
these outputs can be delivered to stakeholders efficiently. Meeting these external demands
does not mean compromising on technical excellence or diverting attention to areas outside
their core strengths.

Web development in Python provides a strategic solution to this challenge. By leveraging
frameworks like FastAPI, data teams can expose APIs and services without leaving their
primary language or workflow. This approach preserves the integrity of complex application
logic, reduces inefficiencies from cross-language translation, and eliminates the need for
unnecessary duplication of effort. At the same time, front-end development and user
experience can remain the domain of specialised web teams, maintaining focus and quality
across the stack.

Web Development in Python for Data Teams 16

If your team is in one of the following categories:

 Data
 AI/ML
 Actuarial
 Quantitative Modelling
 Finance
 Risk Management
 Cyber Security
 etc

… and are looking to expose your complex logic in Python to the web, a data mesh, or a web-
based application, contact us and let us know what you’re working on!

https://lunoxtech.com/get-in-touch

Web Development in Python for Data Teams 17

8 REFERENCES

Statistics Graphs:

https://www.statista.com/chart/16567/popular-programming-languages/

https://www.devoriales.com/post/374/python-tops-the-tiobe-index-the-most-popular-
programming-languages-january-2025

https://coding-bootcamp-2021.acmbpdc.org/02-overview-of-programming-languages/

Repositories:

https://github.com/dl-lim/fastapi-example

https://github.com/django/django

https://github.com/pallets/flask

https://github.com/fastapi/fastapi

https://github.com/fastapi/sqlmodel

